ST. ANNE’S COLLEGE OF ENGINEERING AND TECHNOLOGY

ANGUCHETTYPALAYAM

DEPARTMENT COMPUTER SCIENCE ENGINEERING
CS-6412 – MICROPROCESSOR AND MICROCONTROLLER LAB

IV semEster

Name:___________________________________

Year/sem: _______________Branch:_______

Reg. no.:________________________________

EXPT NO:

 8086 PROGRAMMING

DATE:
ADDITION & SUBTRACTION

AIM:

To write an Assembly Language Program (ALP) for performing the addition and subtraction operation of two byte numbers.

APPARATUS REQUIRED:

	SL.NO
	ITEM
	SPECIFICATION
	QUANTITY

	1.
	Microprocessor kit
	8086 kit
	1

	2.
	Power Supply
	+5 V dc
	1

PROBLEM STATEMENT:

Write an ALP in 8086 to add and subtract two byte numbers stored in the memory location 1000H to 1003H and store the result in the memory location 1004H to 1005H.Also provide an instruction in the above program to consider the carry also and store the carry in the memory location 1006H.
ALGORITHM:

(i) 16-bit addition

h) Initialize the MSBs of sum to 0

i) Get the first number.
j) Add the second number to the first number.

k) If there is any carry, increment MSBs of sum by 1.

l) Store LSBs of sum.

m) Store MSBs of sum.
(ii) 16-bit subtraction

f) Initialize the MSBs of difference to 0

g) Get the first number

h) Subtract the second number from the first number.

i) If there is any borrow, increment MSBs of difference by 1.

j) Store LSBs of difference

k) Store MSBs of difference.

FLOWCHART

ADDITION SUBTRACTION

[image: image4.wmf]

[image: image5.wmf]

[image: image6.wmf]

[image: image7.wmf]

[image: image8.wmf]

[image: image9.wmf]

[image: image10.wmf]

[image: image11.wmf]

[image: image12.wmf]

[image: image13.wmf]

[image: image14.wmf]

[image: image15.wmf]

[image: image16.wmf]

[image: image17.wmf]

[image: image18.wmf]

[image: image19.wmf]

[image: image20.wmf]

[image: image21.wmf]

[image: image22.wmf]

[image: image23.wmf]

[image: image24.wmf]

[image: image25.wmf]

[image: image26.wmf]

[image: image27.wmf]

[image: image28.wmf]

[image: image29.wmf]

ADDITION
	PROGRAM
	COMMENTS

	MOV CX, 0000H
	Initialize counter CX

	MOV AX,[1200]
	Get the first data in AX reg

	MOV BX, [1202]
	Get the second data in BX reg

	ADD AX,BX
	Add the contents of both the regs AX & BX

	JNC L1
	Check for carry

	INC CX
	If carry exists, increment the CX

	L1 : MOV [1206],CX
	Store the carry

	MOV [1204], AX
	Store the sum

	HLT
	Stop the program

SUBTRACTION
	PROGRAM
	COMMENTS

	MOV CX, 0000H
	Initialize counter CX

	MOV AX,[1200]
	Get the first data in AX reg

	MOV BX, [1202]
	Get the second data in BX reg

	SUB AX,BX
	Subtract the contents of BX from AX

	JNC L1
	Check for borrow

	INC CX
	If borrow exists, increment the CX

	L1 : MOV [1206],CX
	Store the borrow

	MOV [1204], AX
	Store the difference

	HLT
	Stop the program

ADDITION
	

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

SUBTRACTION
	

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

MANUAL CALCULATION

RESULT:.

Thus addition & subtraction of two byte numbers are performed and the result is stored.

EXPT NO:

 8086 PROGRAMMING

DATE:
MULTIPLICATION & DIVISION

AIM:

To write an Assembly Language Program (ALP) for performing the multiplication and division operation of 16-bit numbers .

APPARATUS REQUIRED:

	SL.NO
	ITEM
	SPECIFICATION
	QUANTITY

	1.
	Microprocessor kit
	8086
	1

	2.
	Power Supply
	+5 V dc
	1

PROBLEM STATEMENT:

Write an ALP in 8086 MP to multiply two 16-bit binary numbers and store the result in the memory location. Write instructions for dividing the data and store the result.
ALGORITHM:

(i) Multiplication of 16-bit numbers:

a) Get the multiplier.

b) Get the multiplicand

c) Initialize the product to 0.

d) Product = product + multiplicand
e) Decrement the multiplier by 1

f) If multiplicand is not equal to 0,repeat from step (d) otherwise store the product.

(ii) Division of 16-bit numbers.

a) Get the dividend

b) Get the divisor

c) Initialize the quotient to 0.

d) Dividend = dividend – divisor

e) If the divisor is greater, store the quotient. Go to step g.
f) If dividend is greater, quotient = quotient + 1. Repeat from step (d)
g) Store the dividend value as remainder.
FLOWCHART

 MULTIPLICATION DIVISION

MULTIPLICATION
	PROGRAM
	COMMENTS

	MOV AX,[1200]
	Get the first data

	MOV BX, [1202]
	Get the second data

	MUL BX
	Multiply both

	MOV [1206],AX

	Store the lower order product

	MOV AX,DX

	Copy the higher order product to AX

	MOV [1208],AX

	Store the higher order product

	HLT

	Stop the program

DIVISION
	PROGRAM
	COMMENTS

	MOV AX,[1200]
	Get the first data

	MOV DX, [1202]
	Get the second data

	MOV BX, [1204]
	Divide the dividend by divisor

	DIV BX
	Store the lower order product

	MOV [1206],AX

	Copy the higher order product to AX

	MOV AX,DX

	Store the higher order product

	MOV [1208],AX

	Stop the program

	HLT

	Get the first data

MULTIPLICATION
	

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

DIVISON
	

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

MANUAL CALCULATION

RESULT:.Thus multiplication & division of two byte numbers are performed and the result is stored
EXPT NO:

 8086 PROGRAMMING

DATE:
LARGEST& SMALLEST

AIM:

To write an Assembly Language Program (ALP) to find the largest and smallest number in a given array.
APPARATUS REQUIRED:

	SL.NO
	ITEM
	SPECIFICATION
	QUANTITY

	1.
	Microprocessor kit
	8086
	1

	2.
	Power Supply
	+5 V dc
	1

PROBLEM STATEMENT:

An array of length 10 is given from the location. Find the largest and smallest number and store the result.

ALGORITHM:

(i) Finding largest number:

a. Load the array count in a register C1.

b. Get the first two numbers.

c. Compare the numbers and exchange if the number is small.
d. Get the third number from the array and repeat the process until C1 is 0.
(ii) Finding smallest number:

e. Load the array count in a register C1.

f. Get the first two numbers.

g. Compare the numbers and exchange if the number is large.
h. Get the third number from the array and repeat the process until C1 is 0.
FLOWCHART

LARGEST NUMBER IN AN ARRAY SMALLEST NUMBER IN AN ARRAY

LARGEST

	PROGRAM
	COMMENTS

	MOV SI,1200H
	Initialize array size

	MOV CL,[SI]
	Initialize the count

	INC SI
	Go to next memory location

	MOV AL,[SI]
	Move the first data in AL

	DEC CL
	Reduce the count

	L2 : INC SI
	Move the SI pointer to next data

	CMP AL,[SI]
	Compare two data’s

	JNB L1
	If AL > [SI] then go to L1 (no swap)

	MOV AL,[SI]
	Else move the large number to AL

	L1 : DEC CL
	Decrement the count

	JNZ L2
	If count is not zero go to L2

	MOV DI,1300H
	Initialize DI with 1300H

	MOV [DI],AL
	Else store the biggest number in 1300 location

	HLT
	Stop

SMALLEST
	PROGRAM
	COMMENTS

	MOV SI,1200H
	Initialize array size

	MOV CL,[SI]
	Initialize the count

	INC SI
	Go to next memory location

	MOV AL,[SI]
	Move the first data in AL

	DEC CL
	Reduce the count

	L2 : INC SI
	Move the SI pointer to next data

	CMP AL,[SI]
	Compare two data’s

	JB L1
	If AL < [SI] then go to L1 (no swap)

	MOV AL,[SI]
	Else move the large number to AL

	L1 : DEC CL
	Decrement the count

	JNZ L2
	If count is not zero go to L2

	MOV DI,1300H
	Initialize DI with 1300H

	MOV [DI],AL
	Else store the biggest number in 1300 location

	HLT
	Stop

LARGEST

	

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

SMALLEST

	

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

RESULT:.

Thus largest and smallest number is found in a given array.
EXPT NO:

 8086 PROGRAMMING

DATE:
COPYING A STRING

AIM:

 To move a string of length FF from source to destination.

ALGORITHM:

a. Initialize the data segment .(DS)

b. Initialize the extra data segment .(ES)

c. Initialize the start of string in the DS. (SI)

d. Initialize the start of string in the ES. (DI)

e. Move the length of the string(FF) in CX register.

f. Move the byte from DS TO ES, till CX=0.

`

`

 NO

COPYING A STRING

	PROGRAM
	COMMENTS

	MOV SI,1200H
	Initialize destination address

	MOV DI,1300H
	Initialize starting address

	MOV CX,0006H
	Initialize array size

	CLD
	Clear direction flag

	REP MOVSB
	Copy the contents of source into destination until count reaches zero

	HLT
	Stop

	INPUT

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

	OUTPUT

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

RESULT:

Thus a string of a particular length is moved from source segment to destination segment.

EXPT NO:

 8086 PROGRAMMING

DATE:
SEARCHING A STRING

AIM:

 To scan for a given byte in the string and find the relative address of the byte from the starting location of the string.

ALGORITHM:

a. Initialize the extra segment .(ES)

b. Initialize the start of string in the ES. (DI)

c. Move the number of elements in the string in CX register.

d. Move the byte to be searched in the AL register.

e. Scan for the byte in ES. If the byte is found ZF=0, move the address pointed by ES:DI to BX.

NO

SEARCHING FOR A CHARACTER IN THE STRING

	PROGRAM
	COMMENTS

	MOV DI,1300H
	Initialize destination address

	MOV SI, 1400H

	Initialize starting address

	MOV CX, 0006H
	Initialize array size

	CLD
	Clear direction flag

	MOV AL, 08H
	Store the string to be searched

	REPNE SCASB
	Scan until the string is found

	DEC DI
	Decrement the destination address

	MOV BL,[DI]
	Store the contents into BL reg

	MOV [SI],BL

	Store content of BL in source address

	HLT
	Stop

	INPUT

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

	OUTPUT

	MEMORY LOCATION

	

	DATA

	

RESULT:
Thus a given byte or word in a string of a particular length in the extra segment(destination) is found .

EXPT NO:

 8086 PROGRAMMING

DATE:
FIND AND REPLACE

AIM:

 To find a character in the string and replace it with another character.

ALGORITHM:

a. Initialize the extra segment .(E S)

b. Initialize the start of string in the ES. (DI)

c. Move the number of elements in the string in CX register.

d. Move the byte to be searched in the AL register.

e. Store the ASCII code of the character that has to replace the scanned byte in BL register.

f. Scan for the byte in ES. If the byte is not found, ZF≠1 and repeat scanning.

g. If the byte is found, ZF=1.Move the content of BL register to ES:DI.

 NO

 YES

¿

FIND AND REPLACE A CHARACTER IN THE STRING

	PROGRAM
	COMMENTS

	MOV DI,1300H
	Initialize destination address

	MOV SI,1400H

	Initialize starting address

	MOV CX, 0006H
	Initialize array size

	CLD
	Clear direction flag

	MOV AL, 08H
	Store the string to be searched

	MOV BH,30H
	Store the string to be replaced

	REPNE SCASB
	Scan until the string is found

	DEC DI
	Decrement the destination address

	MOV BL,[DI]
	Store the contents into BL reg

	MOV [SI],BL

	Store content of BL in source address

	MOV [DI],BH

	Replace the string

	HLT
	Stop

	INPUT

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

	OUTPUT

	MEMORY
	
	
	
	
	
	

	DATA
	
	
	
	
	
	

RESULT:

Thus a given byte or word in a string of a particular length in the extra segment(destination) is found and is replaced with another character.

EXPT NO:

 8086 INTERFACING

DATE:
INTERFACING ANALOG TO DIGITAL CONVERTER

AIM:

 To write an assembly language program to convert an analog signal into a digital signal using an ADC interfacing.
APPARATUS REQUIRED:
	SL.NO
	ITEM
	SPECIFICATION
	QUANTITY

	1.
	Microprocessor kit
	8086
	1

	2.
	Power Supply
	+5 V dc,+12 V dc
	1

	3.
	ADC Interface board
	-
	1

PROBLEM STATEMENT:
 The program is executed for various values of analog voltage which are set with the help of a potentiometer. The LED display is verified with the digital value that is stored in a memory location.

THEORY:

 An ADC usually has two additional control lines: the SOC input to tell the ADC when to start the conversion and the EOC output to announce when the conversion is complete. The following program initiates the conversion process, checks the EOC pin of ADC 0809 as to whether the conversion is over and then inputs the data to the processor. It also instructs the processor to store the converted digital data at RAM location.

ALGORITHM:

(i) Select the channel and latch the address.

(ii) Send the start conversion pulse.

(iii) Read EOC signal.

(iv) If EOC = 1 continue else go to step (iii)

(v) Read the digital output.

(vi) Store it in a memory location.
FLOW CHART:

PROGRAM TABLE

	PROGRAM
	COMMENTS

	MOV AL,00
	Load accumulator with value for ALE high

	OUT 0C8H,AL
	Send through output port

	MOV AL,08
	Load accumulator with value for ALE low

	OUT 0C8H,AL
	Send through output port

	MOV AL,01
	Store the value to make SOC high in the accumulator

	OUT 0D0H,AL
	Send through output port

	MOV AL,00
	Introduce delay

	MOV AL,00
	

	MOV AL,00
	

	MOV AL,00
	Store the value to make SOC low the accumulator

	OUT 0D0H,AL
	Send through output port

	L1 : IN AL, 0D8H
	Read the EOC signal from port & check for end of conversion

	AND AL,01
	

	CMP AL,01
	

	JNZ L1
	If the conversion is not yet completed, read EOC signal from port again

	IN AL,0C0H
	Read data from port

	MOV BX,1100
	Initialize the memory location to store data

	MOV [BX],AL
	Store the data

	HLT
	Stop

	ANALOG VOLTAGE
	DIGITAL DATA ON LED DISPLAY
	HEX CODE IN MEMORY LOCATION

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

RESULT:
Thus the ADC was interfaced with 8086 and the given analog inputs were converted into its digital equivalent.

EXPT NO:

 8086 INTERFACING

DATE:
INTERFACING DIGITAL – TO – ANALOG CONVERTER

AIM :

1. To write an assembly language program for digital to analog conversion

2. To convert digital inputs into analog outputs & To generate different waveforms
APPARATUS REQUIRED:
	SL.NO
	ITEM
	SPECIFICATION
	QUANTITY

	1.
	Microprocessor kit
	8086 Vi Microsystems
	1

	2.
	Power Supply
	+5 V, dc,+12 V dc
	1

	3.
	DAC Interface board
	-
	1

PROBLEM STATEMENT:
The program is executed for various digital values and equivalent analog voltages are measured and also the waveforms are measured at the output ports using CRO.

THEORY:

 Since DAC 0800 is an 8 bit DAC and the output voltage variation is between –5v and +5v. The output voltage varies in steps of 10/256 = 0.04 (approximately). The digital data input and the corresponding output voltages are presented in the table. The basic idea behind the generation of waveforms is the continuous generation of analog output of DAC. With 00 (Hex) as input to DAC2 the analog output is –5v. Similarly with FF H as input, the output is +5v. Outputting digital data 00 and FF at regular intervals, to DAC2, results in a square wave of amplitude 5v.Output digital data from 00 to FF in constant steps of 01 to DAC2. Repeat this sequence again and again. As a result a saw-tooth wave will be generated at DAC2 output. Output digital data from 00 to FF in constant steps of 01 to DAC2. Output digital data from FF to 00 in constant steps of 01 to DAC2. Repeat this sequence again and again. As a result a triangular wave will be generated at DAC2 output.

ALGORITHM:

Measurement of analog voltage:

(i) Send the digital value of DAC.

(ii) Read the corresponding analog value of its output.

Waveform generation:

Square Waveform:

(i) Send low value (00) to the DAC.

(ii) Introduce suitable delay.

(iii) Send high value to DAC.

(iv) Introduce delay.

(v) Repeat the above procedure.

Saw-tooth waveform:

(i) Load low value (00) to accumulator.

(ii) Send this value to DAC.

(iii) Increment the accumulator.

(iv) Repeat step (ii) and (iii) until accumulator value reaches FF.

(v) Repeat the above procedure from step 1.

Triangular waveform:

(i) Load the low value (00) in accumulator.

(ii) Send this accumulator content to DAC.

(iii) Increment the accumulator.

(iv) Repeat step 2 and 3 until the accumulator reaches FF, decrement the

 accumulator and send the accumulator contents to DAC.

(v) Decrementing and sending the accumulator contents to DAC.

(vi) The above procedure is repeated from step (i)

FLOWCHART:

MEASUREMENT OF ANALOG VOLTAGE

SQUARE WAVE FORM

TRIANGULAR WAVEFORM

SAWTOOTH WAVEFORM

MEASUREMENT OF ANALOG VOLTAGE:

	PROGRAM
	COMMENTS

	MOV AL,7FH
	Load digital value 00 in accumulator

	OUT C0,AL
	Send through output port

	HLT
	Stop

	DIGITAL DATA
	ANALOG VOLTAGE

	
	

	
	

	
	

	
	

	
	

	
	

	
	

PROGRAM TABLE: Square Wave

	PROGRAM
	COMMENTS

	L2 : MOV AL,00H
	Load 00 in accumulator

	OUT C0,AL
	Send through output port

	CALL L1
	Give a delay

	MOV AL,FFH
	Load FF in accumulator

	OUT C0,AL
	Send through output port

	CALL L1
	Give a delay

	JMP L2
	Go to starting location

	L1 : MOV CX,05FFH
	Load count value in CX register

	L3 : LOOP L3
	Decrement until it reaches zero

	RET
	Return to main program

PROGRAM TABLE: Saw tooth Wave

	PROGRAM
	COMMENTS

	L2 : MOV AL,00H
	Load 00 in accumulator

	L1 : OUT C0,AL
	Send through output port

	INC AL
	Increment contents of accumulator

	JNZ L1
	Send through output port until it reaches FF

	JMP L2
	Go to starting location

PROGRAM TABLE: Triangular Wave

	PROGRAM
	COMMENTS

	L3 : MOV AL,00H
	Load 00 in accumulator

	L1 : OUT C0,AL
	Send through output port

	INC AL
	Increment contents of accumulator

	JNZ L1
	Send through output port until it reaches FF

	MOV AL,0FFH
	Load FF in accumulator

	L2 : OUT C0,AL
	Send through output port

	DEC AL
	Decrement contents of accumulator

	JNZ L2
	Send through output port until it reaches 00

	JMP L3
	Go to starting location

WAVEFORM GENERATION:

	WAVEFORMS
	AMPLITUDE
	TIMEPERIOD

	Square Waveform
	
	

	Saw-tooth waveform
	
	

	Triangular waveform
	
	

MODEL GRAPH:

Square Waveform

Saw-tooth waveform

Triangular waveform

RESULT:Thus the DAC was interfaced with 8085 and different waveforms have been generated.

EXP.NO:

STEPPER MOTOR INTERFACING DATE:

AIM:

 To write an assembly language program in 8086 to rotate the motor at different speeds.

APPARATUS REQUIRED:

	SL.NO
	ITEM
	SPECIFICATION
	QUANTITY

	1.
	Microprocessor kit
	8086
	1

	2.
	Power Supply
	+5 V, dc,+12 V dc
	1

	3.
	Stepper Motor Interface board
	-
	1

	4.
	Stepper Motor
	-
	1

PROBLEM STATEMENT:

Write a code for achieving a specific angle of rotation in a given time and particular number of rotations in a specific time.

THEORY:

 A motor in which the rotor is able to assume only discrete stationary angular position is a stepper motor. The rotary motion occurs in a stepwise manner from one equilibrium position to the next.Two-phase scheme: Any two adjacent stator windings are energized. There are two magnetic fields active in quadrature and none of the rotor pole faces can be in direct alignment with the stator poles. A partial but symmetric alignment of the rotor poles is of course possible.
ALGORITHM:

 For running stepper motor clockwise and anticlockwise directions

(i) Get the first data from the lookup table.

(ii) Initialize the counter and move data into accumulator.

(iii) Drive the stepper motor circuitry and introduce delay

(iv) Decrement the counter is not zero repeat from step(iii)

(v) Repeat the above procedure both for backward and forward directions.

SWITCHING SEQUENCE OF STEPPER MOTOR:

	MEMORY LOCATION
	A1
	A2
	B1
	B2
	HEX CODE

	4500
	1
	0
	0
	0
	09 H

	4501
	0
	1
	0
	1
	05 H

	4502
	0
	1
	1
	0
	06 H

	4503
	1
	0
	1
	0
	0A H

FLOWCHART:

PROGRAM TABLE

	PROGRAM
	COMMENTS

	START : MOV DI, 1200H
	Initialize memory location to store the array of number

	MOV CX, 0004H
	Initialize array size

	LOOP 1 : MOV AL,[DI]
	Copy the first data in AL

	OUT 0C0,AL
	Send it through port address

	MOV DX, 1010H
	Introduce delay

	L1 : DEC DX
	

	JNZ L1
	

	INC DI
	Go to next memory location

	LOOP LOOP1
	Loop until all the data’s have been sent

	JMP START
	Go to start location for continuous rotation

	1200 : 09,05,06,0A
	Array of data’s

RESULT: Thus the assembly language program for rotating stepper motor in both clockwise and anticlockwise directions is written and verified.

EXP.NO:
INTERFACING PRGRAMMABLE KEYBOARD AND DISPLAY

CONTROLLER- 8279
DATE:

AIM :

To display the rolling message “ HELP US “ in the display.

APPARATUS REQUIRED:

8086 Microprocessor kit, Power supply, Interfacing board.

ALGORITHM :

Display of rolling message “ HELP US “

1. Initialize the counter

2. Set 8279 for 8 digit character display, right entry

3. Set 8279 for clearing the display

4. Write the command to display

5. Load the character into accumulator and display it

6. Introduce the delay

7. Repeat from step 1.

1. Display Mode Setup: Control word-10 H

0 0 0 1 0 0 0 0

	0
	0
	0
	D
	D
	K
	K
	K

DD

 00- 8Bit character display left entry

 01- 16Bit character display left entry

 10- 8Bit character display right entry

 11- 16Bit character display right entry

KKK- Key Board Mode

 000-2Key lockout.

2.Clear Display: Control word-DC H
1 1 0 1 1 1 0 0

	1
	1
	0
	CD
	CD
	CD
	CF
	CA

 11 A0-3; B0-3 =FF

3. Write Display: Control word-90H

1 0 0 1 0 0 0 0

	1
	0
	0
	AI
	A
	A
	A
	A

FLOWCHART:

PROGRAM TABLE

	PROGRAM
	COMMENTS

	START : MOV SI,1200H
	Initialize array

	MOV CX,000FH
	Initialize array size

	MOV AL,10
	Store the control word for display mode

	OUT C2,AL
	Send through output port

	MOV AL,CC
	Store the control word to clear display

	OUT C2,AL
	Send through output port

	MOV AL,90
	Store the control word to write display

	OUT C2,AL
	Send through output port

	L1 : MOV AL,[SI]
	Get the first data

	OUT C0,AL
	Send through output port

	CALL DELAY
	Give delay

	INC SI
	Go & get next data

	LOOP L1
	Loop until all the data’s have been taken

	JMP START
	Go to starting location

	DELAY : MOV DX,0A0FFH
	Store 16bit count value

	LOOP1 : DEC DX
	Decrement count value

	JNZ LOOP1
	Loop until count values becomes zero

	RET
	Return to main program

LOOK-UP TABLE:

	1200
	98
	68
	7C
	C8

	1204
	FF
	1C
	29
	FF

	MEMORY LOCATION
	7-SEGMENT LED FORMAT
	HEX DATA

	
	d
	c
	b
	a
	dp
	e
	g
	f
	

	1200H
	1
	0
	0
	1
	1
	0
	0
	0
	98

	1201H
	0
	1
	1
	0
	1
	0
	0
	0
	68

	1202H
	0
	1
	1
	1
	1
	1
	0
	0
	7C

	1203H
	1
	1
	0
	0
	1
	0
	0
	0
	C8

	1204H
	1
	1
	1
	1
	1
	1
	1
	1
	FF

	1205H
	0
	0
	0
	0
	1
	1
	0
	0
	1C

	1206H
	0
	0
	1
	0
	1
	0
	0
	1
	29

	1207H
	1
	1
	1
	1
	1
	1
	1
	1
	FF

RESULT:
Thus the rolling message “HELP US” is displayed using 8279 interface kit.
EXP. NO:

INTERFACING USART 8251 DATE:
AIM:

To study interfacing technique of 8251 (USART) with microprocessor 8086 and write an 8086 ALP to transmit and receive data between two serial ports with RS232 cable.

APPARATUS REQUIRED:

8086 kit (2 Nos), RS232 cable.

THEORY:

The 8251 is used as a peripheral device for serial communication and is programmed by the CPU to operate using virtually any serial data transmission technique. The USART accepts data characters from the CPU in parallel format and then converts them into a continuous serial data stream for transmission. Simultaneously, it can receive serial data streams and convert them into parallel data characters for the CPU. The CPU can read the status of the USART at any time. These include data transmission errors and control signals. The control signals define the complete functional definition of the 8251. Control words should be written into the control register of 8251.These control words are split into two formats: 1) Mode instruction word & 2) Command instruction word. Status word format is used to examine the error during functional operation.

[image: image1.png]Command inssruction

7 6 5 4 3 2 1 0

IENEIENE e | oom | e

Figure 6. Programming nterfuce io the 8251 — Command Word. (source, Antonakos, 3" ed. 1999)

 1...transmit enable

 1...data terminal ready

 1... receive enable

 1... send break character

 1.... reset error flags (pe,oe,fe)

 1..... request to send (rts)

 1...... internal reset

 1....... enter hunt mode (enable search for sync characters)

 [image: image2.png]Status byte

7 6 5 4 3 2
DSR | SYNDET FE O L PE TREMPTY

|]

RxRDY TRDY |

 1 ransmitter ready

 1. receiver ready

 1.. transmitter empty

 1... parity error (pe)

 1.... overrun error (oe)

 1..... framing error (fe), async only

 1...... sync detect, sync only

 1....... data set ready (dsr)

[image: image3.png]Mede insruction

'

Puicy Character Basd
lengh
Humbe of -t 00 syn mose
stopbits 1-even 005 bits 01-x | cleck
01-6bis 10-x 16ciock
- invalid
O - bt 10-7bis 11 x 64 chck
11-8 bits
10- 1.3 bis
11 -2bis Pasiy
(Asynchronous) ensvle
0-disable
1-ensble
External
syac
deteet

0 SYNDET is an input
1~ SYNDET is an output
(Syschronous)

Single
chancer

single syne charscter
single sync character

ALGORITHM:

1. Initialize 8253 and 8251 to check the transmission and reception of a character

2. Initialize8253 to give an output of 150Khz at channel 0 which will give a 9600 baud rate of 8251.

3. The command word and mode word is written to the 8251 to set up for subsequent operations

4. The status word is read from the 8251 on completion of a serial I/O operation, or when the host CPU is checking the status of the device before starting the next I/O operation

FLOW CHART:

PROGRAM: TRANSMITTER END
	PROGRAM
	COMMENTS

	MOV AL,36
	Initialize 8253 in mode 3 square wave generator

	OUT CE,AL
	Send through port address

	MOV AL,10
	Initialize AL with lower value of count (clock frequency 150KHz)

	OUT C8,AL
	Send through port address

	MOV AL,00
	Initialize AL with higher value of count

	OUT C8,AL
	Send through port address

	MOV AL,4E
	Set mode for 8251(8bit data, No parity, baud rate factor 16x & 1 stop bit)

	OUT C2,AL
	Send through port address

	MOV AL,37
	Set command instruction(enables transmit enable & receive enable bits)

	OUT C2,AL
	Send through port address

	L1:IN AL,C2
	Read status word

	AND AL,04
	Check whether transmitter ready

	JZ L1
	If not wait until transmitter becomes ready

	MOV AL,41
	Set the data as 41

	OUT C0,AL
	Send through port address

	INT 2
	Restart the system

RECEIVER END
	PROGRAM
	COMMENTS

	MOV AL,36
	Initialize 8253 in mode 3 square wave generator

	OUT CE,AL
	Send through port address

	MOV AL,10
	Initialize AL with lower value of count (clock frequency 150KHz)

	OUT C8,AL
	Send through port address

	MOV AL,00
	Initialize AL with higher value of count

	OUT C8,AL
	Send through port address

	MOV AL,4E
	Set mode for 8251(8bit data, No parity, baud rate factor 16x & 1 stop bit)

	OUT C2,AL
	Send through port address

	MOV AL,37
	Set command instruction(enables transmit enable & receive enable bits)

	OUT C2,AL
	Send through port address

	L1:IN AL,C2
	Read status word

	AND AL,02
	Check whether receiver ready

	JZ L1
	If not wait until receiver becomes ready

	IN AL,C0
	If it is ready, get the data

	MOV BX,1500
	Initialize BX register with memory location to store the data

	MOV [BX],AL
	Store the data in the memory location

	INT 2
	Restart the system

RESULT:
Thus ALP for serial data communication using USART 8251 is written and the equivalent ASCII 41 for character ‘A’ is been transmitted & received.
EXP. NO:

INTERFACING PPI 8255 DATE:

AIM:

To write ALP by interfacing 8255 with 8086 in mode 0, mode 1 and mode 2

APPARATUS REQUIRED:

8086 kit, 8255 interface kit.

ALGORITHM:

Mode 0

1. Initialize accumulator to hold control word

2. store control word in control word register
3. Read data port A.

4. Store data from port A in memory
5. Place contents in port B
Mode 1 & Mode 2
1. Initialize accumulator to hold control word (for port A)

2. Store control word in control word register

3. Initialize accumulator to hold control word (for port B)

4. Place contents in control word register.

5. Disable all maskable interrupts, enable RST 5.5

6. send interrupt mask for RST 6.5 & 7.5

7. Enable interrupt flag

8. Read data from port A, place contents in port B

FLOWCHART

Mode 0 Mode 1 & 2

MODE 0

	PROGRAM
	COMMENTS

	MOV AL,90H
	Set the control word

	OUT C6,AL
	Send it to control port

	IN AL,C0
	Get the contents of port A in AL

	OUT C2,AL
	Send the contents of port B to port address

	HLT
	Stop

MODE 1
	PROGRAM
	COMMENTS

	MOV AL,0B0H
	Set the control word for mode 1

	OUT C6,AL
	Send it to control port

	MOV AL,09H
	Control for BSR mode

	OUT C6,AL
	Send it to control port

	MOV AL,13H
	Interrupt generation

	OUT 30,AL
	

	MOV AL,0AH
	Through 8259

	OUT 32,AL
	

	MOV AL,0FH
	Using IR2 interrupt(lower order count)

	OUT 32,AL
	

	MOV AL,00H
	Higher order count

	OUT 32,AL
	

	STI
	Set trap flag

	HLT
	Stop

	ISR:
	Subroutine

	IN AL,C0
	Read from Port A

	OUT C2,AL
	Send it to Port B

	HLT
	Stop

MODE 2

	PROGRAM
	COMMENTS

	MOV AL,0C0H
	Set the control word for mode 2

	OUT C6,AL
	Send it to control port

	MOV AL,09H
	Control for BSR mode

	OUT C6,AL
	Send it to control port

	MOV AL,13H
	Interrupt generation

	OUT 30,AL
	

	MOV AL,0AH
	Through 8259

	OUT 32,AL
	

	MOV AL,0FH
	Using IR2 interrupt(lower order count)

	OUT 32,AL
	

	MOV AL,00H
	Higher order count

	OUT 32,AL
	

	STI
	Set trap flag

	HLT
	Stop

	ISR:
	Subroutine

	IN AL,C0
	Read from Port A

	OUT C2,AL
	Send it to Port B

	HLT
	Stop

BSR mode

Bit set/reset, applicable to PC only. One bit is S/R at a time. Control word:

	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	0 (0=BSR)
	X
	X
	X
	B2
	B1
	B0
	S/R (1=S,0=R)

Bit select: (Taking Don't care's as 0)

	B2
	B1
	B0
	PC bit
	Control word (Set)
	Control word (reset)

	0
	0
	0
	0
	0000 0001 = 01h
	0000 0000 = 00h

	0
	0
	1
	1
	0000 0011 = 03h
	0000 0010 = 02h

	0
	1
	0
	2
	0000 0101 = 05h
	0000 0100 = 04h

	0
	1
	1
	3
	0000 0111 = 07h
	0000 0110 = 06h

	1
	0
	0
	4
	0000 1001 = 09h
	0000 1000 = 08h

	1
	0
	1
	5
	0000 1011 = 0Bh
	0000 1010 = 0Ah

	1
	1
	0
	6
	0000 1101 = 0Dh
	0000 1100 = 0Ch

	1
	1
	1
	7
	0000 1111 = 0Fh
	0000 1110 = 0Eh

I/O mode

	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0

	1 (1=I/O)
	GA mode select
	PA
	PCU
	GB mode select
	PB
	PCL

· D6, D5: GA mode select:

· 00 = mode0

· 01 = mode1

· 1X = mode2

· D4(PA), D3(PCU): 1=input 0=output

· D2: GB mode select: 0=mode0, 1=mode1

· D1(PB), D0(PCL): 1=input 0=output

 Mode 0 Mode 1 Mode 2

	Input
	Output
	Input
	Output
	Input
	Output

	
	
	
	
	
	

Result:

The programs for interfacing 8255 with 8085 are executed & the output is obtained for modes 0,1 & 2

EXPT NO:

 8051 PROGRAMMING

 DATE:

8 BIT ADDITION

AIM:

To write a program to add two 8-bit numbers using 8051 microcontroller.

ALGORITHM:

1. Clear Program Status Word.

2. Select Register bank by giving proper values to RS1 & RS0 of PSW.

3. Load accumulator A with any desired 8-bit data.

4. Load the register R 0 with the second 8- bit data.

5. Add these two 8-bit numbers.

6. Store the result.

7. Stop the program.

FLOW CHART:

8 Bit Addition (Immediate Addressing)

	ADDRESS
	LABEL
	MNEMONIC
	OPERAND
	HEX CODE
	COMMENTS

	4100
	
	CLR
	C
	C3
	Clear CY Flag

	4101
	
	MOV
	A,(data1
	74,data1
	Get the data1 in Accumulator

	4103
	
	ADDC
	A, # data 2
	24,data2
	Add the data1 with data2

	4105
	
	MOV
	DPTR, # 4500H
	90,45,00
	Initialize the memory location

	4108
	
	MOVX
	@ DPTR, A
	F0
	Store the result in memory location

	4109
	L1

	SJMP
	L1
	80,FE
	Stop the program

	OUTPUT

	MEMORY LOCATION

	DATA

	4500

	

RESULT:
Thus the 8051 ALP for addition of two 8 bit numbers is executed.

EXPT NO:

8 BIT SUBTRACTION DATE:

AIM:

 To perform subtraction of two 8 bit data and store the result in memory.

ALGORITHM:

a. Clear the carry flag.

b. Initialize the register for borrow.

c. Get the first operand into the accumulator.

d. Subtract the second operand from the accumulator.

e. If a borrow results increment the carry register.

f. Store the result in memory.

FLOWCHART:

8 Bit Subtraction (Immediate Addressing)

	ADDRESS
	LABEL
	MNEMONIC
	OPERAND
	HEX CODE
	COMMENTS

	4100
	
	CLR
	C
	C3
	Clear CY flag

	4101
	
	MOV
	A, # data1
	74, data1
	Store data1 in accumulator

	4103
	
	SUBB
	A, # data2
	94,data2
	Subtract data2 from data1

	4105
	
	MOV
	DPTR, # 4500
	90,45,00
	Initialize memory location

	4108
	
	MOVX
	@ DPTR, A
	F0
	Store the difference in memory location

	4109
	L1

	SJMP
	L1
	80,FE
	Stop

	OUTPUT

	MEMORY LOCATION

	DATA

	4500

	

RESULT:

Thus the 8051 ALP for subtraction of two 8 bit numbers is executed.
EXPT NO:

 8051 PROGRAMMING
 DATE:

8 BIT MULTIPLICATION

AIM:

 To perform multiplication of two 8 bit data and store the result in memory.

ALGORITHM:

a. Get the multiplier in the accumulator.

b. Get the multiplicand in the B register.

c. Multiply A with B.

d. Store the product in memory.

FLOWCHART:

8 Bit Multiplication

	ADDRESS
	LABEL
	MNEMONIC
	OPERAND
	HEX CODE
	COMMENTS

	4100
	
	MOV
	A ,#data1
	74, data1
	Store data1 in accumulator

	4102
	
	MOV
	B, #data2
	75,data2
	Store data2 in B reg

	4104
	
	MUL
	A,B
	F5,F0
	Multiply both

	4106
	
	MOV
	DPTR, # 4500H
	90,45,00
	Initialize memory location

	4109
	
	MOVX
	@ DPTR, A
	F0
	Store lower order result

	401A
	
	INC
	DPTR
	A3
	Go to next memory location

	410B
	
	MOV
	A,B
	E5,F0
	Store higher order result

	410D
	
	MOV
	@ DPTR, A
	F0
	

	410E
	STOP

	SJMP
	STOP
	80,FE
	Stop

	INPUT
	OUTPUT

	MEMORY LOCATION
	DATA

	MEMORY LOCATION
	DATA

	4500

	
	4502
	

	4501
	
	4503
	

RESULT:
Thus the 8051 ALP for multiplication of two 8 bit numbers is executed.

EXPT NO:

 8051 PROGRAMMING

 DATE:

8 BIT DIVISION

AIM:

 To perform division of two 8 bit data and store the result in memory.

ALGORITHM:

1. Get the Dividend in the accumulator.

2. Get the Divisor in the B register.

3. Divide A by B.

4. Store the Quotient and Remainder in memory.

FLOWCHART:

8 Bit Division

	ADDRESS
	LABEL
	MNEMONIC
	OPERAND
	HEX CODE
	COMMENTS

	4100
	
	MOV
	A, # data1
	74,data1
	Store data1 in accumulator

	4102
	
	MOV
	B, # data2
	75,data2
	Store data2 in B reg

	4104
	
	DIV
	A,B
	84
	Divide

	4015
	
	MOV
	DPTR, # 4500H
	90,45,00
	Initialize memory location

	4018
	
	MOVX
	@ DPTR, A
	F0
	Store remainder

	4109
	
	INC
	DPTR
	A3
	Go to next memory location

	410A
	
	MOV
	A,B
	E5,F0
	Store quotient

	410C
	
	MOV
	@ DPTR, A
	F0
	

	410D
	STOP

	SJMP
	STOP
	80,FE
	Stop

	INPUT
	OUTPUT

	MEMORY LOCATION
	DATA
	MEMORY LOCATION
	DATA

	4500 (dividend)
	
	4502 (remainder)
	

	4501 (divisor)
	
	4503 (quotient)
	

RESULT:
Thus the 8051 ALP for division of two 8 bit numbers is executed.

EXP. NO:

LOGICAL AND BIT MANIPULATION DATE:
AIM:

To write an ALP to perform logical and bit manipulation operations using 8051 microcontroller.

APPARATUS REQUIRED:

8051 microcontroller kit

ALGORITHM:

1. Initialize content of accumulator as FFH

2. Set carry flag (cy = 1).

3. AND bit 7 of accumulator with cy and store PSW format.

4. OR bit 6 of PSW and store the PSW format.

5. Set bit 5 of SCON.

6. Clear bit 1 of SCON.

7. Move SCON.1 to carry register.

8. Stop the execution of program.

FLOWCHART:

PROGRAM TABLE

	ADDRESS

	HEX CODE
	LABEL
	MNEMONICS
	OPERAND
	COMMENT

	4100
	90,45,00
	
	MOV
	DPTR,#4500
	Initialize memory location

	4103
	74,FF
	
	MOV
	A,#FF
	Get the data in accumulator

	4105
	D3
	
	SETB
	C
	Set CY bit

	4016
	82,EF
	
	ANL
	C, ACC.7
	Perform AND with 7th bit of accumulator

	4018
	E5,D0
	
	MOV
	A,DOH
	Store the result

	410A
	F0
	
	MOVX
	@DPTR,A
	

	410B
	A3
	
	INC
	DPTR
	Go to next location

	410C
	72,AA
	
	ORL
	C, IE.2
	OR CY bit with 2nd bit if IE reg

	410E
	C2,D6
	
	CLR
	PSW.6
	Clear 6th bit of PSW

	4110
	E5,D0
	
	MOV
	A,DOH
	Store the result

	4112
	F0
	
	MOVX
	@DPTR,A
	

	4113

	A3
	
	INC
	DPTR
	Go to next location

	4114
	D2,90
	
	SETB
	SCON.5
	Set 5th of SCON reg

	4116

	C2,99
	
	CLR
	SCON.1
	Clear 1st bit of SCON reg

	4118
	E5,98
	
	MOV
	A,98H
	Store the result

	411A
	F0
	
	MOVX
	@DPTR,A
	

	411B
	A3
	
	INC
	DPTR
	Go to next location

	411C

	A2,99
	
	MOV
	C,SCON.1
	Copy 1st bit of SCON reg to CY flag

	411E
	E5,D0
	
	MOV

	A,DOH
	Store the result

	4120

	F0
	
	MOVX
	@DPTR,A
	

	4122
	80,FE
	L2
	SJMP
	L2

	Stop

	MEMORY LOCATION
	SPECIAL FUNCTION REGISTER FORMAT
	BEFORE EXECUTION
	AFTER EXECUTION

	4500H (PSW)
	CY
	AC
	FO
	RS1
	RS0
	OV
	-
	P
	00H
	88H

	
	
	
	
	
	
	
	
	
	
	

	4501H (PSW)
	CY
	AC
	FO
	RS1
	RS0
	OV
	-
	P
	40H
	88H

	
	
	
	
	
	
	
	
	
	
	

	4502H (SCON)
	SM0
	SM1
	SM2
	REN
	TB8
	RB8
	TI
	RI
	0FH
	20H

	
	
	
	
	
	
	
	
	
	
	

	4503H (PSW)
	CY
	AC
	FO
	RS1
	RS0
	OV
	-
	P
	FFH
	09H

	
	
	
	
	
	
	
	
	
	
	

RESULT: Thus the bit manipulation operation is done in 8051 microcontroller.
EX.NO
PROGRAMS TO VERIFY TIMER, INTERRUPTS & UART OPERATIONS IN 8031 MICROCONTROLLER

DATE :
a) Program to generate a square wave of frequency --------.

Steps to determine the count:

Let the frequency of sqaurewave to be generated be Fs KHz.

And the time period of the squarewave be Ts Sec.

Oscillator Frequency = 11.0592MHz.

One machine cycle = 12 clock periods

Time taken to complete one machine cycle=12*(1/11.0592MHz)= 1.085microsec.

Y(dec) = (Ts/2)/(1.085microsec)

Count(dec) = 65536(dec) – Y(dec)

 = Count(hexa)

MOV TMOD,#10h
; To select timer1 & mode1 operation

L1:

MOV TL1,#LOWERORDER BYTE OF THE COUNT

MOV TH1,#HIGHER ORDER BYTE OF THE COUNT

SETB TR1

; to start the timer (TCON.6)

BACK:
JNB TF1,BACK
; checking the status of timerflag1(TCON.7) for

 overflow

CPL Px.x

; get the square wave through any of the portpins

; eg. P1.2 (second bit of Port 1)

CLR TR1

; stop timer

CLR TF1

; clear timer flag for the next cycle

SJMP L1

b) Program to transfer a data serially from one kit to another.

Transmitter:

MOV TMOD,#20H

; Mode word to select timer1 & mode 2

MOV TL1,#FDH

; Initialize timer1 with the count

MOV TH1,#FFH

MOV SCON,#50H

; Control word for serial communication to

 to select serial mode1

SETB TR1

; Start timer1

MOV A,#06h

MOV SBUF,A

; Transfer the byte to be transmitted to serial

 Buffer register.

LOOP:

JNB TI, LOOP

; checking the status of Transmit interrupt

flag

CLR TI

HERE:

SJMP HERE

Receiver:

MOV TMOD,#20H

MOV TL1,#FDH

MOV TH1,#FFH

MOV SCON,#50H

SETB TR1

LOOP:

JNB RI,LOOP

MOV A,SBUF

MOV DPTR,#4500H

MOVX @DPTR,A

CLR RI

HERE:

SJMP HERE

EX.NO.
COMMUNICATION BETWEEN 8051 MICROCONTROLLER

KIT & PC

DATE :

SERIAL COMMUNICATION

8051>H

HELP MENU

D
Display data, program, internal, bit memory or registers

E
Edit data, program, internal, bit memory or registers

S
Single step from specified address, press SP to terminate

G
Execute the program till user break

B
Set address till where the program is to be executed

C
Clear break points

F10
Key followed by 4 key at the PC to upload data to a file (DOS)

T
Test the onboard peripherals

:
Download a file from PC mem to the SDA-SI-MEL kit (DOS)

A
Assembler

Z
Disassembler

TEST FOR ONBOARD PERIPHERALS

For SDA SI-MEL kit, following menu is displayed on pressing the option "T"

8051>T

ALS-SDA SI-MEL Kit Test monitor

1. Test internal Data RAM

2. Test external Data Memory (U6)

3. Test external Data memory (U7)

4. 8255 loop test

5. Test 8253

6. Exit

Select (1-6):

Suppose the user presses the key '1', following message is displayed if the internal data RAM is OK.

Testing internal data RAM: Pass

After displaying the message, the menu is displayed once again waits for user to enter a key

EDITING MEMORY COMMAND:

8051>E

EDIT (R,B,M,P,D)…D - EXTERNAL DATA RAM

Enter STA address = 0400

0400 =
7F:55
Press 'N' key to go to the next address

0401 =
D5:66

0402 =
D3:77

0403 =

73:88

0404 =

6F:12

0405 =

CB:01

0406 =

A7:02
Press 'P' key to go to the previous address

0407 =
6F:03

0408 =
7B:04

0409 =
29:05

040A =
6F:06

040B =
73:07

040C =

FF:08

040D =
7D:09
Press 'CR' key to have the same address

040E =
09:90
Press 'ESC' Key to abort the command

8051>E

EDIT (R,B,M,P,D)…B - BITS

Enter STA address = 00

00 = 0:1

01= 0:1

02 = 0:0

03 = 0:1

03 = 1:

03 = 1:

02 = 0:

8051>E

EDIT (R,B,M,P,D)…R- REGISTERS

ACC = 00:33

PSW = 00:44

DPH = 00:55

DPL = 00:00

DPL = 00:00

8051>E

EDIT (R,B,M,P,D)…-P = PROGRAM CODE

8000 = FF:78

8001 = FF:10

8002 = FF:79

8003 = FF:20

8004 = FF:7A

8005 = FF: 12

8007 = FF : 00

8008 = FF : 03

8009 = FF : 0F

8051>E

EDIT (R,B,M,P,D)…-M - INTERNAL RAM

0000 = 00 : 12

0001 = 00 : 34

0002 = 00 : 00

DISPLAY COMMAND
8051>D

EDIT (R,B,M,P,D)…-EXTERNAL DATA RAM

Enter STA address = 0400

Enter END address = 040F

0500 55 66 77 88 12 01 02 03 04 05 06 07 08 09 04 D7

SETTING BREAK COMMAND :

8051>B

BR _ NO: R

BR_ADD 0000

ERROR! ONLY A BREAKS ALLOWED

8051>B

BR _ NO: 0

ERROR! BREAK NUMBERS MUST BE BETWEEN 1 & 8

CLEAR BREAK COMMAND:

8051>C

BR_N0:A
Clears all the break point set by the user

8051>C

BR_N0:1
Clears the break point number 1

PROGRAMME EXECUTION COMMAND:

8051>G

PROGRAM EXECUTION

ENTER START ADDRESS = 8000

ACC PSW DPH DPL PCH PCL SP B R0 R1 R2 R3 R3 R4 R5 R6 R7

 33 44 55 00 10 34 00 00 00 00 00 00

ASSEMBLE MEMORY COMMAND

8051>A

ENTER START ADDRESS = 8000

DISASSEMBLE MEMORY COMMAND
8051>Z

EX. NO.
PROGRAMS FOR DIGITAL CLOCK AND STOP WATCH (USING

8086)

DATE:
Program that places a message on the screen every 10 seconds, using int 1ah;

CODE SEGMENT

TIMEDELAY:

MOV SP,1000H

MOV DI,10XD

TIME OUT:

MOV AH,00H

INT 1AH

MOV BX,DX

TIMER:

MOV AH, 00H

INT 1AH

SUB DX, BX

CMP DX, 182XD

JC TIMER

MOV AH, 09H

CS
MOV DX,MSG

INT 21H

DEC DI

JNZ TIMEOUT

MOV AX,4C00H

INT 21H

MSG:

DB 'TEN MORE SECONDS HAVE PASSED $'

CODE ENDS

EXPERIMENTS USING MASM – 8086 PROGRAMS

Simple Arithmetic Operation

16-BIT ADDITION

PROBLEM STATEMENT:

Write a program to add the given two 16-bit Nos. in 8086(p.
ALGORITHM:

 1 Get the addend and augend.
 2. Initialize DX register for carry
3. Add addend and augend.

4. If there is carry, increment DX register and go to step6 or else directly go to step6.

5. Initialize the memory pointer to output location

6. Store the result & carry in consecutive memory locations.

7. Stop the program execution.

EXERCISE:

Write an ALP using INTEL8086 mnemonics to add any two 32-bit numbers.
PROGRAM:

data_here segment

 firstno dw 0202h

; first no.

 secondno dw 0202h

; second no.

 sum dw 2 dup(0)

; store sum here

data_here ends

code_here segment

 assume cs:code_here,ds:data_here

 start: mov ax,data_here

; initialize data segment

 mov ds,ax

 mov ax,firstno

; get first no.

 mov dx,0000h

; initialize dx for carry.

 add ax,secondno

; add second to it.

 jnc go

 inc dx

 go: mov sum,ax

; store the sum & carry.

 mov sum+2,dx

 int 3

code_here ends

 end start

FLOWCHART:

NO

YES

II. 16-BIT SUBTRACTION

PROBLEM STATEMENT:

 Write a program to subtract given two, 16 bit numbers.

ALGORITHM:

1. Get the minuend and subtrahend.

2. Compare the minuend and subtrahend. If minuend is lesser than subtrahend, interchange the numbers and increment Dx register.

3. Subtract subtrahend from minuend.

4. Initialize the memory pointer to output memory location.

5. Store the results in two memory locations and DX register content in the next memory location.

6. Stop the program execution.

CONCLUSION:

 Thus, subtraction of two 16-bit numbers was performed.

EXERCISE:

1. Write an ALP to subtract any two 32-bit numbers using INTEL8086 mnemonics.

2. Write an ALP to subtract any two 16-bit numbers.

(HINT: If subtrahend is greater than minuend, take 2’s complement of the result and indicate it by putting 01 in DL register.)

PROGRAM:
data_here segment

 minuend dw 2222h

; Minuend

 subtrahend dw 1111h

; Subtrahend

 result dw 2 dup(0)

; Store result here.

data_here ends

code_here segment

 assume cs:code_here,ds:data_here

 start: mov ax,data_here

; Initialize data segment.

 mov ds,ax

 mov ax,minuend

; Get minuend & store in Acc.

 mov dx,subtrahend

; Get subtrahend & store in dx.
 mov cx,0000h

; Initialize cx for carry

 cmp ax,dx

; compare minuend & subtrahend if

 jnc ahead

 minuend smaller than subtrahend ,

 mov bx,dx

 interchange minuend & subtrahend.

 mov dx,ax

 mov ax,bx

 mov cx,0001h

; Increment carry by one.

 ahead: sub ax,dx

; subtract dx from ax

 mov result,ax

; store the result & carry.

 mov result+2,cx

 int 3

code_here ends

 end start
FLOWCHART:

YES

 NO

III. 16-BIT MULTIPLICATION

PROBLEM STATEMENT:

Write a program to multiply two, 16-bit numbers using MASM software.

ALGORITHM:

1. Get the multiplicand and multiplier

2. Multiply the multiplicand with multiplier using repeated addition method.

3. Initialize the memory pointer to output memory location.

4. Store the results in memory locations.

5. Stop the program execution.

EXERCISE:

Write an ALP using INTEL8086 mnemonics to multiply two signed 16-bit numbers.

FLOWCHART:

PROGRAM:

data_here
segment

multiplicand dw 0202h

; Multiplicand

multiplier dw 0202h

; Multiplier

 product dw 2 dup(0)

; store product here.

data_here
ends

code_here
segment

 assume cs:code_here,ds:data_here

 start:
mov ax,data_here

; Initialize data segment.

 mov ds,ax

mov ax,multiplicand

; Get multiplicand

 mul multiplier

; multiply multiplier with it.

mov product,ax

; Store the result.

 mov product+2,dx

int 3

code_here ends

 end start

CONCLUSION:

Thus, multiplication of two, 16-bit numbers is performed using INTEL 8086 Mnemonics.

IV. 16-BIT DIVISION

PROBLEM STATEMENT:

Write a program to Divide two, 16-bit numbers using MASM software.

ALGORITHM:

1. Get the dividend and divisor.

2. Divide dividend by divisor.

3. Initialize the memory pointer to output memory location.

4. Store the results in memory locations.

5. Stop the program execution.

EXERCISE:

Write an ALP using INTEL8086 mnemonics to divide two signed 16-bit numbers.

FLOWCHART:

PROGRAM

data_here
segment

 dividend dw 2222h

; Dividend

divisor dw 1111h

; Divisor

 result dw 2 dup(0)

; Store result here.

data_here
 ends

code_here
segment

 assume cs:code_here,ds:data_here

 start:
mov ax,data_here

; Initialize data segment.

 mov ds,ax

 mov ax,dividend

; Get dividend

div divisor

; Divide it by divisor.

 mov result,ax

; Store result.

mov result+2,dx

 int 3

code_here ends

 end start

CONCLUSION:

Thus, division of two, unsigned 16-bit numbers is performed using INTEL 8086 Mnemonics.

12 . BIOS/DOS CALLS – DISPLAY

AIM:

To display a message on the CRT screen of a microcomputer using DOS calls.

ALGORITHM:

1. Initialize the data segment and the message to be displayed.

2. Set function value for display.

3. Point to the message and run the interrupt to display the message in the CRT.

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

MSG DB 0DH, 0AH, “GOOD MORNING” , ODH, OAH, “$”

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV AH, 09H

MOV DX, OFFSET MSG

INT 21H

MOV AH, 4CH

INT 21H

CODE ENDS

END START

RESULT:

A message is displayed on the CRT screen of a microcomputer using DOS calls

13. BIOS/DOS CALLS – FILE MANIPULATION
AIM:

To open a file using DOS calls.

ALGORITHM:

1. Initialize the data segment, file name and the message to be displayed.

2. Set the file attribute to create a file using a DOS call.

3. If the file is unable t o create a file display the message

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

FILENAME DB “SAMPLE.DAT”, “$”

MSG DB 0DH, 0AH, “FILE NOT CREATED”, ODH, OAH, “$”

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV DX, OFFSET FILENAME

MOV CX, 00H

MOV AH, 3CH

INT 21H

JNC LOOP1

MOV AX, DATA

MOV DS, AX

MOV DX, OFFSET MSG

MOV AH, 09H

INT 21H

LOOP1
MOV AH, 4CH

INT 21H

CODE ENDS

END START

RESULT : A file is opened using DOS calls.

14. BIOS/DOS CALLS – DISK INFORMATION
AIM:

To display the disk information.

ALGORITHM:

1. Initialize the data segment and the message to be displayed.

2. Set function value for disk information.

3. Point to the message and run the interrupt to display the message in the CRT.

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

MSG DB 0DH, 0AH, “GOOD MORNING” , ODH, OAH, “$”

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV AH, 36H

MOV DX, OFFSET MSG

INT 21H

MOV AH, 4CH

INT 21H

CODE ENDS

END START

RESULT:

The disk information is displayed.

15 STRING MANIPULATION

I. 8086 STRING MANIPULATION – SEARCH A WORD

AIM:

To search a word from a string.

ALGORITHM:

1. Load the source and destination index register with starting and the ending address respectively.

2. Initialize the counter with the total number of words to be copied.

3. Clear the direction flag for auto incrementing mode of transfer.

4. Use the string manipulation instruction SCASW with the prefix REP to search a word from string.

5. If a match is found (z=1), display 01 in destination address. Otherwise, display 00 in destination address.

RESULT:

A word is searched and the count of number of appearances is displayed.

PROGRAM:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT

LIST DW 53H, 15H, 19H, 02H

DEST EQU 3000H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV AX, 15H

MOV SI, OFFSET LIST

MOV DI, DEST

MOV CX, COUNT

MOV AX, 00

CLD

REP

SCASW

JZ LOOP

MOV AX, 01

LOOP

MOV [DI], AX

MOV AH, 4CH

INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 15H, 19H, 02H
OUTPUT:
3000
01

II.8086 STRING MANIPULATION –FIND AND REPLACE A WORD

AIM:

To find and replace a word from a string.

ALGORITHM:

1. Load the source and destination index register with starting and the ending address respectively.

2. Initialize the counter with the total number of words to be copied.

3. Clear the direction flag for auto incrementing mode of transfer.

4. Use the string manipulation instruction SCASW with the prefix REP to search a word from string.

5. If a match is found (z=1), replace the old word with the current word in destination address. Otherwise, stop.

RESULT:

A word is found and replaced from a string.

PROGRAM:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT

LIST DW 53H, 15H, 19H, 02H

REPLACE EQU 30H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV AX, 15H

MOV SI, OFFSET LIST

MOV CX, COUNT

MOV AX, 00

CLD

REP

SCASW

JNZ LOOP

MOV DI, LABEL LIST

MOV [DI], REPLACE

LOOP

MOV AH, 4CH

INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 15H, 19H, 02H
OUTPUT:

LIST: 53H, 30H, 19H, 02H
III. 8086 STRING MANIPULATION – COPY A STRING

AIM:

To copy a string of data words from one location to the other.

ALGORITHM:

6. Load the source and destination index register with starting and the ending address respectively.

7. Initialize the counter with the total number of words to be copied.

8. Clear the direction flag for auto incrementing mode of transfer.

9. Use the string manipulation instruction MOVSW with the prefix REP to copy a string from source to destination.

RESULT:

A string of data words is copied from one location to other.

PROGRAM:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT

SOURCE EQU 2000H

DEST EQU 3000H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV ES, AX

MOV SI, SOURCE

MOV DI, DEST

MOV CX, COUNT

CLD

REP
MOVSW

MOV AH, 4CH

INT 21H

CODE ENDS

END START

INPUT:

OUTPUT:

2000
48

3000
48

2001
84

3001
84

2002
67

3002
67

2003
90

3003
90

2004
21

3004
21

IV.8086 STRING MANIPULATION – SORTING
AIM:

To sort a group of data bytes.

ALGORITHM:

· Place all the elements of an array named list (in the consecutive memory locations).

· Initialize two counters DX & CX with the total number of elements in the array.

· Do the following steps until the counter B reaches 0.

· Load the first element in the accumulator

· Do the following steps until the counter C reaches 0.

1. Compare the accumulator content with the next element present in the next memory location. If the accumulator content is smaller go to next step; otherwise, swap the content of accumulator with the content of memory location.

2. Increment the memory pointer to point to the next element.

3. Decrement the counter C by 1.

· Stop the execution.

RESULT:

 A group of data bytes are arranged in ascending order.

PROGRAM:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT

LIST DW 53H, 25H, 19H, 02H

COUNT EQU 04H

DATA ENDS

CODE SEGMENT

START:
MOV AX, DATA

MOV DS, AX

MOV DX, COUNT-1

LOOP2:
MOV CX, DX

MOV SI, OFFSET LIST

AGAIN:
MOV AX, [SI]

CMP AX, [SI+2]

JC LOOP1

XCHG [SI +2], AX

XCHG [SI], AX

LOOP1:
ADD SI, 02

LOOP AGAIN

DEC DX

JNZ LOOP2

MOV AH, 4CH

INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 25H, 19H, 02H
OUTPUT:

LIST: 02H, 19H, 25H, 53H

 START

CX=length of string, DF=0.

Move a byte from source string (DS) to destination string (ES)

 Decrement CX

Check for ZF=1

 STOP

Initialize DS,ES,SI,DI

START

CX=length of the string, DF=0.

Scan for a particular character specified in AL Register.

Check for ZF=1

 STOP

Initialize DS,ES ,SI,DI

Move DI to BX

START

CX=length of the string in ES, DF=0.

DF=0.

Scan for a particular character specified in AL Register.

Check for ZF=1

 STOP

Initialize DS, ES, SI, DI

Move the content of BL to ES:DI

START

START

SET UP COUNTER (CARRY)

SET UP COUNTER (CY)

GET FIRST OPERAND TO A

GET FIRST OPERAND

SUBTRACT

SECOND OPERAND

FROM MEMORY

GET SECOND OPERAND TO A

IS THERE ANY CY

A = A + B

YES

IS THERE ANY CARRY

YES

COUNTER = COUNTER + 1

NO

COUNTER = COUNTER + 1

STORE THE DIFFERENCE

NO

STORE THE CARRY

STORE THE SUM

STOP

STORE THE CARRY

STOP

Start

Start

Load Divisor & Dividend

Get Multiplier & Multiplicand

MULTIPLICAND

QUOTIENT = 0

REGISTER=00

DIVIDEND =

DIVIDEND-DIVISOR

REGISTER = REGISTER + MULTIPLICAND

QUOTIENT = QUOTIENT+1

Multiplier=MULTIPLIER – 1

IS

DIVIDEND <

DIVISOR

NO

NO

IS

 ?

MULTIPLIER

=0?

YES

STORE QUOTIENT

STORE REMAINDER

= DIVIDEND NOW

YES

STORE THE RESULT

STOP

 STOP

START

START

INITIALIZE COUNT

POINTER MAX = 0

INITIALIZE COUNT

POINTER MIN = 0

PONITER =

POINTER + 1

PONITER =

POINTER + 1

YES

IS MIN (POINTER ?

IS MAX (POINTER ?

YES

NO

NO

MIN = POINTER

MAX = POINTER

COUNT = COUNT-1

COUNT = COUNT-1

NO

IS COUNT = 0

?

NO

IS COUNT = 0

?

YES

YES

STORE MINIIMUM

STORE MAXIMUM

STOP

STOP

STOP

[Product] � AX

[Product+2]�DX

AX / Divisor

AX�Quotient

DX�Remainder

AX �Dividend

DX�0000H

START

STOP

[Product] � AX

[Product+2] �DX

DX, AX�AX . Multiplier

AX � Multiplicand

START

[Result] � AX

[Result+2] � CX

AX�AX - DX

CX�01H

BX�DX

DX�AX

AX�BX

Is

DX>AX ?

STOP

AX � Minuend

DX� Subtrahend

CX� 0000H

START

SELECT THE CHANNEL AND LATCH ADDRESS

SEND THE START CONVERSION PULSE

NO

IS EOC = 1?

YES

READ THE DIGITALOUTPUT

STORE THE DIGITAL VALUE IN THE MEMORY LOCATION SPECIFIED

STOP

START

START

INTIALISE THE ACCUMULATOR SEND ACC CONTENT TO DAC

SEND THE DIGITALVALUE TO ACCUMULATOR

DELAY

TRANSFER THE ACCUMULATOR CONTENTS TO DAC

LOAD THE ACC WITH MAX VALUE SEND ACC CONTENT TO DAC

DELAY

READ THE CORRESPONDING ANALOG VALUE

STOP

START

INITIALIZE ACCUMULATOR

START

INITIALIZE ACCUMULATOR

SEND ACCUMULATOR CONTENT TO DAC

INCREMENT ACCUMULATOR CONTENT

SEND ACCUMULATOR CONTENT TO DAC

YES

INCREMENT ACCUMULATOR CONTENT

IS ACC (FF

NO

YES

NO

IS ACC (FF

DECREMENT ACCUMULATOR CONTENT

SEND ACCUMULATOR CONTENT TO DAC

NO

YES

IS ACC (00

START

INTIALIZE COUNTER FOR LOOK UP TABLE

GET THE FIRST DATA FROM THE ACCUMULATOR

MOVE DATA INTO THE ACCUMULATOR

DRIVE THE MOTOR CIRCUITARY

DELAY

DECREMENT COUNTER

YES

IS B = 0 ?

NO

GET THE DATA FROM LOOK UP TABLE

START

Clear PSW

Select Register Bank

Load A and R 0 with 8- bit datas

Add A & R 0

Store the sum

STOP

 START

CLEAR CARRY FLAG

GET I’ST OPERAND IN ACCR

SUBTRACT THE 2’ND OPERAND FROM ACCR

STORE RESULT IN MEMORY

STOP

IS CF=1

INCREMENT THE BORROW REGISTER

Y

N

 START

GET MULTIPLIER IN ACCR

GET MULTIPLICAND IN B REG

MULTIPLY A WITH B

STORE RESULT IN MEMORY

STOP

 START

GET DIVIDEND IN ACCR

GET DIVISOR IN B REG

DIVIDE A BY B

STORE QUOTIENT & REMAINDER IN MEMORY

STOP

Move bit 1 of SCON to CY and store PSW

Set bit 5 of SCON , clear bit 1 and store SCON

Clear bit 6 of PSW, Store PSW

Store the PSW format, OR CY with bit 2 IE reg

Set CY flag, AND CY with MSB of ACC

START

STOP

1-Enables Clear display

0-Contents of RAM will be displayed

1-FIFO Status is cleared

1-Clear all bits

(Combined effect of CD)

Selects one of the 16 rows of display.

Auto increment = 1, the row address selected will be incremented after each of read and write operation of the display RAM.

START

STOP

[Sum] � AX

[Sum+2] �DX

SET UP POINTER

INITIALIZE THE COUNTER

SET 8279 FOR 8-DIGIT CHARACTER DISPLAY

SET 8279 FOR CLEARING THE DISPLAY

WRITE THE COMMAND TO DISPLAY

LOAD THE CHARACTER INTO ACCUMULATOR AND DISPLAY

DELAY

START

Is it High

DX�DX+1

No

Is Carry flag set?

Check TX/RX Ready

AX�AX + Second No.

Store control word in control register

DX� 0000H

START

 AX � Addend

Yes

Write Data into data register

Store control word in control register

STOP

Input to be read from port A

Input to be read from port A

Disable all interrupts except RST 6.5

Store output to port B

Store into accumulator

STOP

START

START

Output written on port B

STOP

PAGE
74

